
XYS

DFE 10 I 600PM

advanced

V_{RRM}	=	600 V
I _{FAV}	=	10 A
t _{rr}	=	35 ns

Package:

- TO-220ACFP
- Industry standard outline
- Plastic overmolded tab for electrical isolation

Ratings

- Epoxy meets UL 94V-0
- RoHS compliant
- Symbol Definition Conditions Unit min. typ. max. max. repetitive reverse voltage $T_{VJ} = 25 °C$ V V_{RRM} 600 $T_{VI} = 25 \,^{\circ}C$ I_R reverse current $V_{R} = 600 V$ 20 μΑ $V_{p} = 600 V$ T_{vJ} = 125 °C 1.5 mΑ $I_{c} = 10 A$ $T_{V,I} = 25 \,^{\circ}C$ 1.50 VF V forward voltage 20 A 1.80 V $|_{F}$ = $I_{c} = 10 A$ T_{VI} = 150 °C 1.30 ν 1.70 $I_{F} = 20 A$ V $T_{c} = 100 \,^{\circ}C$ average forward current rectangular, d = 0.5 10 A I_{FAV} V V_{F0} threshold voltage T_{VI} = 150 °C 0.98 for power loss calculation only slope resistance 28.7 mΩ ۲_F thermal resistance junction to case K/W 4.20 R_{thJC} virtual junction temperature -55 150 °C T_v total power dissipation $T_c = 25 °C$ P_{tot} 30 W max. forward surge current 100 $t_{o} = 10 \text{ ms} (50 \text{ Hz}), \text{ sine}$ $T_{VJ} = 45 \,^{\circ}C$ A IFSM $T_{VI} = 25 \,^{\circ}C$ max. reverse recovery current $I_{\rm RM}$ А $I_{\rm F} = 10 \, {\rm A};$ T_{v.1} = 125 °C A 4 $-di_{F}/dt = 100 \text{ A/}\mu\text{s}$ t " $T_{VJ} = 25 \,^{\circ}C$ reverse recovery time 35 ns V_R = 300 V T_{v.1} = 125 °C 120 ns $V_{R} = 300 V; f = 1 MHz$ $T_{vJ} = 25 \degree C$ C junction capacitance tbd pF EAS non-repetitive avalanche energy I_{AS} = tbd A; L = 100 μ H $T_{VJ} = 25 °C$ tbd mJ repetitive avalanche current $V_{A} = 1.5 \cdot V_{R}$ typ.; f = 10 kHz tbd A IAR

© 2006 IXYS all rights reserved

FRED

Fast Recovery Diode Low Loss and Soft Recovery Single Diode

Part number (Marking on product)

DFE 10 | 600PM

Features / Advantages:

- Planar passivated chips
- Llow leakage current
- Very short recovery time
- Improved thermal behaviour
- Low Irm-values
- · Very soft recovery behaviour Avalanche voltage rated for reliable
- operation
- Soft reverse recovery for low EMI/RFI
- I ow Irm reduces:
- Power dissipation within the diode
- Turn-on loss in the commutating switch

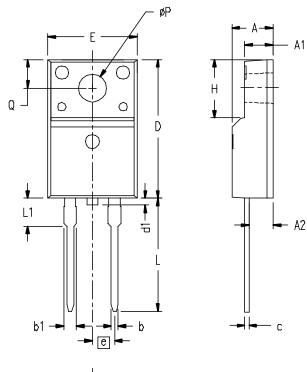
Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power

- supplies (SMPS)
- Uninterruptible power supplies (UPS)

LIXYS

DFE 10 I 600PM


advanced

				Ratings		
Symbol	Definition	Conditions	min.	typ.	max.	Unit
I _{RMS}	RMS current	per pin*			35	Α
R _{thCH}	thermal resistance case to l	heatsink		0.50		K/W
M _D	mounting torque		0.4		0.6	Nm
Fc	mounting force with clip		20		60	Ν
T _{stg}	storage temperature		-55		150	°C
Weight				2		g

* Irms is typically limited by: 1. pin-to-chip resistance; or by 2. current capability of the chip.

In case of 1, a common cathode/anode configuration and a non-isolated backside, the whole current capability can be used by connecting the backside.

Outlines TO-220ACFP

	INCH	١F٢	MILLIMETERS		
SYM	MIN	MAX	MIN		
				MAX	
L A	.177	.193	4.50	4.90	
A1	.092	.108	2.34	2.74	
A2	.101	.117	2.56	2.96	
b	.028	.035	0.70	0.90	
b1	.050	.058	1.27	1.47	
С	.018	.024	0.45	0.60	
D	.617	.633	15.67	16.07	
d1	0	.043	0	1.10	
E	.392	.408	9.96	10.36	
е	.100 BSC		2.54 BSC		
Н	.255	.271	6.48	6.88	
L	.499	.523	12.68	13,28	
L1	.119	.135	3.03	3,43	
ØР	.121	.129	3.08	3.28	
Q	.126	.134	3.20	3.40	

NOTE:

1. All metal surface are matte pure tin plated except trimmed area.